Why Better Sleep Starts in Your Gut

Why Better Sleep Starts in Your Gut

Didn’t sleep well last night? If you’re like millions of Americans, you probably didn’t. Approximately 30% of US adults are affected by insomnia and about 10% chronically. Many of us–35% according to studies–get fewer than 7 hours of snooze time each night.

It’s a big deal. Chronic sleep loss impairs cognitive function, mood and is implicated in 90% of depressed people, has been linked to difficulty controlling weight, and can lead to serious health issues like heart disease, high blood pressure, stroke and diabetes and of course, can leave you feeling fatigued. Chronic sleep deficiency is a big deal.

Millions of chronically sleep-deprived people turn to sleeping pills to help with a more restful night. But, for others, a more natural aid that works with your own body’s mechanism is the answer. That natural aid is to use probiotics supplements that can beneficially affect crucial processes involved in your digestive tract—your gut.

Why Gut Health Affects Sleep: Cutting edge medical research shows how important your gut health is to getting good sleep. Called the gut-brain axis, processes in the digestive tract play a huge role in sleep. Driving these processes is a vast hidden “friendly” army of tiny bacteria in your digestive tract—probiotic bacteria–referred to as your microbiome. When your microbiome is healthy, research shows your sleep will be healthier.

How a Healthy Gut Helps with Better Sleep: Certain friendly bacteria species in your microbiome affect the body’s metabolism of tryptophan. Tryptophan is a precursor to melatonin, a key hormone that helps make you feel sleepy when the sun goes down and regulate the body’s circadian rhythm.

Tryptophan is also involved with serotonin production. Sometimes called the “happy” chemical, serotonin is an important neurotransmitter that helps regulate mood and bring on a feeling of wellbeing. Studies show that tension, stress, anger, anxiety and depression all can harm sleep quality. Serotonin, by helping to create feelings of wellbeing, can help with good sleep.

Other probiotic bacteria in your gut help combat various types of gastrointestinal pain. These discomforts include irritable bowel syndrome as well as gas and bloating. A healthy microbiome chock full of a large colony of mostly friendly probiotic bacteria can ease sensitivity to these types of pain, helping with better sleep quality.(123)

Research Shows Probiotic Supplementation Can Help with Sleep: Many aspects of modern life–stress, nutrient and fiber poor diets, antibiotics in food along with pesticides and chemicals lack of contact with nature, certain medication and antibacterial cleaners–all deplete the good bacteria in our gut that play important roles in producing the key neurotransmitters and substances that help with good sleep.

The good news is that clinical studies show that Probiotic supplements can help with sleep, improve mood, and positively affect the metabolism of tryptophan that in turn, stimulates melatonin and serotonin production.

A double-blind placebo-controlled study was published in Frontiers of Psychiatry that showed subjects given a probiotic mixture containing Lactobacillus Fermentum, L Rhamnosus, L Plantarum and Bifidobacterium Longum for 6 weeks experienced a significant improvement in mood, with a reduction of depressive mood state, anger, fatigue and improvement in sleep quality.(4)

Several other studies on students, including a double-blind randomized placebo-controlled study published in 2017 showed that supplementation with the Probiotic strains Lactobacillus Gasseri and Casei helped reduce academically induced stress, aiding with sleep quality.(567

Other research has shown a positive link between Probiotic supplementation and maintaining levels of tryptophan levels in the body after consistent athletic physical stress. (8 ,9

A broad-spectrum Probiotic formula, like the Doctors Pick 60 Billion CFU Probiotic + Organic Whole-Food Prebiotic, delivers 15 of the top clinically studied Probiotic strains to your Microbiome. Formulated based on 178 clinical studies, it includes each of the key Probiotic stains used in the studies cited here, helping to replenish the friendly bacteria in your Microbiome that can support you in getting that crucial refreshing sleep.

References

  1. Melinda L Jackson, et al 2015. Sleep Science. “Sleep quality and the treatment of intestinal microbiota imbalance in Chronic Fatigue Syndrome: A pilot study https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688574/
  2. Jenkins T.A., Nguyen J.C., Polglaze K.E., Bertrand P.P. “Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis.” Nutrients. 2016; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728667/
  3. Sergio D Paredes, et al. 2009. International Journal of Tryptophan Research. “Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: Streptopelia Risoria as a Model” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195230/
  4. Angela Marotta, et al 2019. Frontiers in Psychiatry. “Effects of Probiotics on Cognitive Reactivity, Mood, and Sleep Quality” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445894/
  5. Takada et al. 2017. “Beneficial effects of Lactobacillus casei strain Shirota on academic stress-induced sleep disturbance in healthy adults: a double-blind, randomized, placebo-controlled trial https://www.wageningenacademic.com/doi/pdf/10.3920/BM2016.0150
  6. “Daily intake of Lactobacillus gasseri CP2305 improves mental, physical, and sleep quality among Japanese medical students enrolled in a cadaver dissection course” https://www.sciencedirect.com/science/article/pii/S1756464617300543?via%3Dihub
  7. Kato-Kataoka A, et al. 2016. “Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress” https://www.wageningenacademic.com/doi/pdf/10.3920/BM2015.0100
  8. Yuanyuan Li et al. 2018. Frontiers in Psychiatry. “The Role of Microbiome in Insomnia, Circadian Disturbance and Depression” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290721/
  9. Barbara Strasser, et al. 2016. “Probiotic Supplements Beneficially Affect Tryptophan–Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133134/#B17-nutrients-08-00752
  10. “Insomnia Statistics Sleep Facts” September 12, 2017 http://www.statisticstats.com/health/insomnia-statistics-sleep-facts/
 

Leave a Reply

Your email address will not be published.

THE 15 TOP CLINICALLY STUDIED PROBIOTIC STRAINS IN DOCTORS PICK BROAD PRO

(References at bottom of page: Most studies cited here were conducted on humans; only a relatively few listed involve lab animals.)
Doctors Pick BROAD PRO brings the best science has to offer

References:

 

Lactobacillus Acidophilus
  1. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/probiotic-acidophilus
  2. https://www.ncbi.nlm.nih.gov/pubmed/8551535
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847857/
  4. https://www.ncbi.nlm.nih.gov/pubmed/23747589
  5. https://www.ncbi.nlm.nih.gov/pubmed/10067658
  6. https://www.journalofdairyscience.org/article/S0022-0302(10)00545-X/fulltext
  7. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)60601-7/fulltext

 

Lactobacillus Bulgaricus
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705123/
  2. https://www.ncbi.nlm.nih.gov/pubmed/21986509
  3. https://www.ncbi.nlm.nih.gov/pubmed/20487575
  4. https://www.ncbi.nlm.nih.gov/pubmed/22923109
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680912/
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475728/
  7. https://www.ncbi.nlm.nih.gov/pubmed/8432622
  8. https://www.ncbi.nlm.nih.gov/pubmed/10660098
  9. https://www.ncbi.nlm.nih.gov/pubmed/597607
  10. https://www.ncbi.nlm.nih.gov/pubmed/3564372

 

Lactobacillus Casei:
  1. https://www.ncbi.nlm.nih.gov/pubmed/26419583
  2. https://www.ncbi.nlm.nih.gov/pubmed/26689231
  3. https://www.ncbi.nlm.nih.gov/pubmed/24673738
  4. https://www.ncbi.nlm.nih.gov/pubmed/20838859
  5. https://www.ncbi.nlm.nih.gov/pubmed/21810608
  6. https://www.ncbi.nlm.nih.gov/pubmed/26672414
  7. https://www.ncbi.nlm.nih.gov/pubmed/22505595
  8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743185/
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744000/
  10. https://www.ncbi.nlm.nih.gov/pubmed/23992486
  11. https://www.ncbi.nlm.nih.gov/pubmed/21329565
  12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858332/
  13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160870/#B55

 

Lactobacillus Fermentum:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670518/
  2. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.4214
  3. https://www.ncbi.nlm.nih.gov/pubmed/21218486
  4. https://www.sciencedirect.com/science/article/abs/pii/S0899900707000111?via%3Dihub
  5. https://www.ncbi.nlm.nih.gov/pubmed/27447674
  6. https://www.karger.com/Article/Abstract/328512
  7. https://bjsm.bmj.com/content/44/4/222

 

Lactobacillus Gasseri:

38. https://www.ncbi.nlm.nih.gov/pubmed/20216555

  1. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/effect-of-lactobacillus-gasseri-sbt2055-in-fermented-milk-on-abdominal-adiposity-in-adults-in-a-randomised-controlled-trial/304E3E2EE11E0D3D4F5D85E7046118A1
  2. Kadooka Y et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomized controlled trial. Br J Nutr. 2013 Nov 14;110(9):1696-703.Epub 2013 Apr 25
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611107/
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
  6. Miyoshi M et al. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice.Eur J Nutr. 2014;53(2):599-606. doi: 10.1007/s00394-013-0568-9. Epub 2013 Aug 6.
  7. https://link.springer.com/article/10.1007%2Fs00203-015-1101-8
  8. https://www.wageningenacademic.com/doi/10.3920/BM2014.0108

 

Lactobacillus Plantarum:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594053/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419998/
  3. https://www.researchgate.net/publication/304663353_Immunomodulatory_Effects_of_Lactobacillus_plantarum_Lp62_on_Intestinal_Epithelial_and_Mononuclear_Cells
  4. https://www.ncbi.nlm.nih.gov/pubmed/25598393
  5. https://www.ncbi.nlm.nih.gov/pubmed/26620542
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882673/
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936756/

 

Lactobacillus Reuteri:
  1. https://www.nature.com/articles/ejcn2012126
  2. https://www.ncbi.nlm.nih.gov/pubmed/22067612
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917019/
  4. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1348-0421.2009.00154.x
  5. https://www.ncbi.nlm.nih.gov/pubmed/25688886
  6. https://www.nature.com/articles/ejcn2012126
  7. https://www.ncbi.nlm.nih.gov/pubmed/25531996
  8. https://www.ncbi.nlm.nih.gov/pubmed/15629974
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813596/
  10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219330/
  11. https://www.omicsonline.org/open-access/beneficial-bacteria-stimulate-youthful-thyroid-gland-activity-2165-7904.1000220.php?aid=26919
  12. https://www.ncbi.nlm.nih.gov/pubmed/19895848

 

Lactobacillus Rhamnosus:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155824/
  2. https://www.ncbi.nlm.nih.gov/pubmed/24299712
  1. https://www.ncbi.nlm.nih.gov/pubmed/26365389
  2. https://www.ncbi.nlm.nih.gov/pubmed/21899584
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844131/
  4. https://www.ncbi.nlm.nih.gov/pubmed/22692023
  5. https://www.ncbi.nlm.nih.gov/pubmed/22552453
  6. https://www.ncbi.nlm.nih.gov/pubmed/27596801
  7. https://www.ncbi.nlm.nih.gov/pubmed/23957340
  8. https://www.ncbi.nlm.nih.gov/pubmed/22702506
  9. https://www.ncbi.nlm.nih.gov/pubmed/26142892
  10. https://www.ncbi.nlm.nih.gov/pubmed/23740456

 

Bifidobacterium Breve:
  1. https://www.ncbi.nlm.nih.gov/pubmed/15491374
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1720633/
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048518/
  2. https://www.ncbi.nlm.nih.gov/pubmed/12598719
  3. https://www.ncbi.nlm.nih.gov/pubmed/16819382
  1. https://www.ncbi.nlm.nih.gov/pubmed/27590263
  2. https://www.ncbi.nlm.nih.gov/pubmed/15269618
  3. https://academic.oup.com/ajcn/article/93/1/81/4597712
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084046/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034291/
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965514/

 

Bifidobacterium Coagulans:
  1. https://www.ncbi.nlm.nih.gov/pubmed/25079465
  2. https://www.ncbi.nlm.nih.gov/pubmed/24271261
  3. https://www.ncbi.nlm.nih.gov/pubmed/2079358
  4. https://www.ncbi.nlm.nih.gov/pubmed/2086441
  5. https://www.ncbi.nlm.nih.gov/pubmed/23786900
  6. https://www.ncbi.nlm.nih.gov/pubmed/26430929
  7. https://www.ncbi.nlm.nih.gov/pubmed/24706266
  8. https://www.ncbi.nlm.nih.gov/pubmed/25196301
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826289/
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947834/
  2. https://www.ncbi.nlm.nih.gov/pubmed/25219857
  3. https://academic.oup.com/jn/article/145/7/1446/4589930
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784472/
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285933/
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443394/
  7. https://www.tandfonline.com/doi/full/10.1080/09168451.2014.972331
  8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724383/
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769834/
  10. https://www.ncbi.nlm.nih.gov/pubmed/20140275
  11. https://www.ncbi.nlm.nih.gov/pubmed/19332970
  12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129566/
  13. https://www.ncbi.nlm.nih.gov/pubmed/24867512
  14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460128/

 

Bifidobacterium infantis:
  1. https://www.nature.com/articles/pr2004591
  2. https://academic.oup.com/femspd/article/66/3/353/577227
  3. https://www.ncbi.nlm.nih.gov/pubmed/23192454
  1. https://www.ncbi.nlm.nih.gov/pubmed/20460726
  2. https://www.ncbi.nlm.nih.gov/pubmed/17189085
  3. https://gut.bmj.com/content/61/3/354
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774839/
  4. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0#tab2
  5. https://www.ncbi.nlm.nih.gov/pubmed/17893165
  6. https://www.ncbi.nlm.nih.gov/pubmed/19291170
  7. https://academic.oup.com/femspd/article/55/3/324/496928
  8. https://www.ncbi.nlm.nih.gov/pubmed/17259812
  9. https://www.ncbi.nlm.nih.gov/pubmed/16689181
  10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997396/
  11. https://www.ncbi.nlm.nih.gov/pubmed/19367213
  12. https://www.ncbi.nlm.nih.gov/pubmed/16863564
  13. https://www.ncbi.nlm.nih.gov/pubmed/26418574
  14. https://www.ncbi.nlm.nih.gov/pubmed/25794930

 

Bifidobacterium Lactis (Note: was called “Bifidobacterium animalis in older studies”):
  1. https://www.sciencedirect.com/science/article/abs/pii/S089990071500461X?via%3Dihub
  2. https://www.nature.com/articles/pr2008218?proof=true&draft=journal
  3. https://www.ncbi.nlm.nih.gov/pubmed/18801055
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265429/
  5. https://www.ncbi.nlm.nih.gov/pubmed/16794305
  6. https://www.ncbi.nlm.nih.gov/pubmed/19236549
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171707/
  8. https://www.ncbi.nlm.nih.gov/pubmed/26268077
  9. https://www.ncbi.nlm.nih.gov/pubmed/19622191
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877827/
  2. https://www.ncbi.nlm.nih.gov/pubmed/15076628
  3. https://www.ncbi.nlm.nih.gov/pubmed/25599772
  4. https://www.ncbi.nlm.nih.gov/pubmed/15815206
  5. https://www.ncbi.nlm.nih.gov/pubmed/24322191
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761588/
  7. https://www.ncbi.nlm.nih.gov/pubmed/22284965
  8. https://www.ncbi.nlm.nih.gov/pubmed/17635382
  9. https://www.ncbi.nlm.nih.gov/pubmed/18801055

 

Bifidobacterium Longum:

151.https://www.ncbi.nlm.nih.gov/pubmed/15347767

  1. https://www.ncbi.nlm.nih.gov/pubmed/23192454
  2. https://academic.oup.com/femspd/article/66/3/353/577227
  3. https://www.ncbi.nlm.nih.gov/pubmed/22052061
  4. https://www.ncbi.nlm.nih.gov/pubmed/20460726
  5. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0
  6. https://www.ncbi.nlm.nih.gov/pubmed/19291170
  7. https://www.ncbi.nlm.nih.gov/pubmed/17259812
  8. https://www.ncbi.nlm.nih.gov/pubmed/24774670
  9. https://www.ncbi.nlm.nih.gov/pubmed/12906063
  10. https://www.ncbi.nlm.nih.gov/pubmed/16863564
  11. https://www.ncbi.nlm.nih.gov/pubmed/19367213

 

Saccharomyces Boulardii:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296087/
  2. https://www.ncbi.nlm.nih.gov/pubmed/25653151
  3. https://www.ncbi.nlm.nih.gov/pubmed/15858959
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125647/
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829915/
  6. https://www.ncbi.nlm.nih.gov/pubmed/21997865
  7. https://www.ncbi.nlm.nih.gov/pubmed/18256417
  8. https://www.ncbi.nlm.nih.gov/pubmed/17306006
  9. https://www.ncbi.nlm.nih.gov/pubmed/27283364
  10. https://www.ncbi.nlm.nih.gov/pubmed/22476321
  11. https://www.ncbi.nlm.nih.gov/pubmed/22335323
  12. https://www.ncbi.nlm.nih.gov/pubmed/26216624
  13. https://www.ncbi.nlm.nih.gov/pubmed/7872284
  14. https://www.ncbi.nlm.nih.gov/pubmed/24311316
  15. https://www.ncbi.nlm.nih.gov/pubmed/15740542
  1. https://www.ncbi.nlm.nih.gov/pubmed/16572062
  2. https://www.ncbi.nlm.nih.gov/pubmed/15357564
  3. https://www.ncbi.nlm.nih.gov/pubmed/2494098
  4. https://www.ncbi.nlm.nih.gov/pubmed/7872284
  1. https://www.ncbi.nlm.nih.gov/pubmed/7872284

 

Streptococcus Thermophilus:
  1. https://www.ncbi.nlm.nih.gov/pubmed/14627358
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034325/
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526857/

 

Clinical Trial References for FEM PRO Formulation

At Doctors Pick, we only formulate nutritional products based on solid clinical evidence of potential benefits to you. Below is a list of the clinical trials, almost all on human participants, used as the basis for formulating FEM PRO.

References

Lactobacillus Acidophilus
1. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/probiotic-acidophilus
2. https://www.ncbi.nlm.nih.gov/pubmed/8551535
3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847857/
4. https://www.ncbi.nlm.nih.gov/pubmed/23747589
5. https://www.ncbi.nlm.nih.gov/pubmed/10067658
6. https://www.journalofdairyscience.org/article/S0022-0302(10)00545-X/fulltext
7. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)60601-7/fulltext

Lactobacillus Bulgaricus
8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705123/
9. https://www.ncbi.nlm.nih.gov/pubmed/21986509
10. https://www.ncbi.nlm.nih.gov/pubmed/20487575
11. https://www.ncbi.nlm.nih.gov/pubmed/22923109
12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680912/
13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475728/
14. https://www.ncbi.nlm.nih.gov/pubmed/8432622
15. https://www.ncbi.nlm.nih.gov/pubmed/10660098
16. https://www.ncbi.nlm.nih.gov/pubmed/597607
17. https://www.ncbi.nlm.nih.gov/pubmed/3564372

Lactobacillus Casei:
18. https://www.ncbi.nlm.nih.gov/pubmed/26419583
19. https://www.ncbi.nlm.nih.gov/pubmed/26689231
20. https://www.ncbi.nlm.nih.gov/pubmed/24673738
21. https://www.ncbi.nlm.nih.gov/pubmed/20838859
22. https://www.ncbi.nlm.nih.gov/pubmed/21810608
23. https://www.ncbi.nlm.nih.gov/pubmed/26672414
24. https://www.ncbi.nlm.nih.gov/pubmed/22505595
25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743185/
26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744000/
26. https://www.ncbi.nlm.nih.gov/pubmed/23992486
28. https://www.ncbi.nlm.nih.gov/pubmed/21329565
29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858332/
30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160870/#B55

Lactobacillus Fermentum:
31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670518/
32. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.4214
33. https://www.ncbi.nlm.nih.gov/pubmed/21218486
34. https://www.sciencedirect.com/science/article/abs/pii/S0899900707000111?via%3Dihub
35. https://www.ncbi.nlm.nih.gov/pubmed/27447674
36. https://www.karger.com/Article/Abstract/328512
37. https://bjsm.bmj.com/content/44/4/222

Lactobacillus Gasseri:
38. https://www.ncbi.nlm.nih.gov/pubmed/20216555
39. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/effect-of-lactobacillus-gasseri-sbt2055-in-fermented-milk-on-abdominal-adiposity-in-adults-in-a-randomised-controlled-trial/304E3E2EE11E0D3D4F5D85E7046118A1
40. Kadooka Y et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomized controlled trial. Br J Nutr. 2013 Nov 14;110(9):1696-703.Epub 2013 Apr 25
41. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611107/
43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
44. Miyoshi M et al. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice.Eur J Nutr. 2014;53(2):599-606. doi: 10.1007/s00394-013-0568-9. Epub 2013 Aug 6.
45. https://link.springer.com/article/10.1007%2Fs00203-015-1101-8
46. https://www.wageningenacademic.com/doi/10.3920/BM2014.0108

Lactobacillus Helveticus:
47. https://www.ncbi.nlm.nih.gov/pubmed/20974015
48. https://www.researchgate.net/publication/282244005_Administration_of_Lactobacillus_helveticus_NS8_improves_behavioral_cognitive_and_biochemical_aberrations_caused_by_chronic_restraint_stress

Lactobacillus Plantarum:
49. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594053/
50. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419998/
51. https://www.researchgate.net/publication/304663353_Immunomodulatory_Effects_of_Lactobacillus_plantarum_Lp62_on_Intestinal_Epithelial_and_Mononuclear_Cells
52. https://www.ncbi.nlm.nih.gov/pubmed/25598393
53. https://www.ncbi.nlm.nih.gov/pubmed/26620542
54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882673/
55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936756/

Lactobacillus Reuteri:
56. https://www.nature.com/articles/ejcn2012126
57. https://www.ncbi.nlm.nih.gov/pubmed/22067612
58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917019/
59. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1348-0421.2009.00154.x
60. https://www.ncbi.nlm.nih.gov/pubmed/25688886
61. https://www.nature.com/articles/ejcn2012126
62. https://www.ncbi.nlm.nih.gov/pubmed/25531996
63. https://www.ncbi.nlm.nih.gov/pubmed/15629974
64. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813596/
65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219330/
66. https://www.omicsonline.org/open-access/beneficial-bacteria-stimulate-youthful-thyroid-gland-activity-2165-7904.1000220.php?aid=26919
67. https://www.ncbi.nlm.nih.gov/pubmed/19895848

Lactobacillus Rhamnosus:
68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155824/
69. https://www.ncbi.nlm.nih.gov/pubmed/24299712
70. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239510/
71. https://www.ncbi.nlm.nih.gov/pubmed/26365389
72. https://www.ncbi.nlm.nih.gov/pubmed/21899584
73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844131/
74. https://www.ncbi.nlm.nih.gov/pubmed/22692023
75. https://www.ncbi.nlm.nih.gov/pubmed/22552453
76. https://www.ncbi.nlm.nih.gov/pubmed/27596801
77. https://www.ncbi.nlm.nih.gov/pubmed/23957340
78. https://www.ncbi.nlm.nih.gov/pubmed/22702506
79. https://www.ncbi.nlm.nih.gov/pubmed/26142892
80. https://www.ncbi.nlm.nih.gov/pubmed/23740456

Bifidobacterium bifidum:
81. https://www.ncbi.nlm.nih.gov/pubmed/27219886
82. https://www.ncbi.nlm.nih.gov/pubmed/27681077
83. https://www.ncbi.nlm.nih.gov/pubmed/28786012
84. https://www.ncbi.nlm.nih.gov/pubmed/28326881
85. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305430/
86. https://www.ncbi.nlm.nih.gov/pubmed/27209439
87. https://www.ncbi.nlm.nih.gov/pubmed/25604727
88. https://www.ncbi.nlm.nih.gov/pubmed/17878180
89. https://www.ncbi.nlm.nih.gov/pubmed/25909149
90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133134/
91. https://www.ncbi.nlm.nih.gov/pubmed/22205338
92. https://www.ncbi.nlm.nih.gov/pubmed/25648808
93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570661/
94. https://www.ncbi.nlm.nih.gov/pubmed/25244414
95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630703/
96. https://www.ncbi.nlm.nih.gov/pubmed/15829425
97. https://www.ncbi.nlm.nih.gov/pubmed/27623957
98. https://www.ncbi.nlm.nih.gov/pubmed/1597660
99. https://www.ncbi.nlm.nih.gov/pubmed/21418261
100. https://www.ncbi.nlm.nih.gov/pubmed/18785988
101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874795/

Bifidobacterium Breve:
102. https://www.ncbi.nlm.nih.gov/pubmed/15491374
103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1720633/
104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048518/
105. https://www.ncbi.nlm.nih.gov/pubmed/12598719
106. https://www.ncbi.nlm.nih.gov/pubmed/16819382
107. https://www.ncbi.nlm.nih.gov/pubmed/27590263
108. https://www.ncbi.nlm.nih.gov/pubmed/15269618
109. https://academic.oup.com/ajcn/article/93/1/81/4597712
110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084046/
111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034291/
112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965514/

Bifidobacterium Coagulans:
113. https://www.ncbi.nlm.nih.gov/pubmed/25079465
114. https://www.ncbi.nlm.nih.gov/pubmed/24271261
115. https://www.ncbi.nlm.nih.gov/pubmed/2079358
116. https://www.ncbi.nlm.nih.gov/pubmed/2086441
117. https://www.ncbi.nlm.nih.gov/pubmed/23786900
118. https://www.ncbi.nlm.nih.gov/pubmed/26430929
119. https://www.ncbi.nlm.nih.gov/pubmed/24706266
120. https://www.ncbi.nlm.nih.gov/pubmed/25196301
121. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826289/
122. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947834/
123. https://www.ncbi.nlm.nih.gov/pubmed/25219857
124. https://academic.oup.com/jn/article/145/7/1446/4589930
125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784472/
126. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285933/
127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443394/
128. https://www.tandfonline.com/doi/full/10.1080/09168451.2014.972331
129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724383/
130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769834/
131. https://www.ncbi.nlm.nih.gov/pubmed/20140275
132. https://www.ncbi.nlm.nih.gov/pubmed/19332970
133. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129566/
134. https://www.ncbi.nlm.nih.gov/pubmed/24867512
135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460128/

Bifidobacterium infantis:
136. https://www.nature.com/articles/pr2004591
137. https://academic.oup.com/femspd/article/66/3/353/577227
138. https://www.ncbi.nlm.nih.gov/pubmed/23192454
139. https://www.ncbi.nlm.nih.gov/pubmed/20460726
140. https://www.ncbi.nlm.nih.gov/pubmed/17189085
141. https://gut.bmj.com/content/61/3/354
142. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
144. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774839/
145. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0#tab2
146. https://www.ncbi.nlm.nih.gov/pubmed/17893165
147. https://www.ncbi.nlm.nih.gov/pubmed/19291170
148. https://academic.oup.com/femspd/article/55/3/324/496928
149. https://www.ncbi.nlm.nih.gov/pubmed/17259812
150. https://www.ncbi.nlm.nih.gov/pubmed/16689181
151. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997396/
152. https://www.ncbi.nlm.nih.gov/pubmed/19367213
153. https://www.ncbi.nlm.nih.gov/pubmed/16863564
154. https://www.ncbi.nlm.nih.gov/pubmed/26418574
155. https://www.ncbi.nlm.nih.gov/pubmed/25794930

Bifidobacterium Lactis (Note: was called “Bifidobacterium animalis in older studies”):
156. https://www.sciencedirect.com/science/article/abs/pii/S089990071500461X?via%3Dihub
157. https://www.nature.com/articles/pr2008218?proof=true&draft=journal
158. https://www.ncbi.nlm.nih.gov/pubmed/18801055
159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265429/
160. https://www.ncbi.nlm.nih.gov/pubmed/16794305
161. https://www.ncbi.nlm.nih.gov/pubmed/19236549
162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171707/
163. https://www.ncbi.nlm.nih.gov/pubmed/26268077
164. https://www.ncbi.nlm.nih.gov/pubmed/19622191
165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877827/
166. https://www.ncbi.nlm.nih.gov/pubmed/15076628
167. https://www.ncbi.nlm.nih.gov/pubmed/25599772
168. https://www.ncbi.nlm.nih.gov/pubmed/15815206
169. https://www.ncbi.nlm.nih.gov/pubmed/24322191
170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761588/
171. https://www.ncbi.nlm.nih.gov/pubmed/22284965
172. https://www.ncbi.nlm.nih.gov/pubmed/17635382
173. https://www.ncbi.nlm.nih.gov/pubmed/18801055

Bifidobacterium Longum:
174. https://www.ncbi.nlm.nih.gov/pubmed/15347767
175. https://www.ncbi.nlm.nih.gov/pubmed/23192454
176. https://academic.oup.com/femspd/article/66/3/353/577227
177. https://www.ncbi.nlm.nih.gov/pubmed/22052061
178. https://www.ncbi.nlm.nih.gov/pubmed/20460726
178. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0
180. https://www.ncbi.nlm.nih.gov/pubmed/19291170
181. https://www.ncbi.nlm.nih.gov/pubmed/17259812
182. https://www.ncbi.nlm.nih.gov/pubmed/24774670
183. https://www.ncbi.nlm.nih.gov/pubmed/12906063
184. https://www.ncbi.nlm.nih.gov/pubmed/16863564
185. https://www.ncbi.nlm.nih.gov/pubmed/19367213

Bacillus Subtilis:
186. https://www.ncbi.nlm.nih.gov/pubmed/23328284
187. https://www.microbiologyresearch.org/content/journal/jmmcr/10.1099/jmmcr.0.004036
188. DOI: https://doi.org/10.1016/j.celrep.2019.12.078

Saccharomyces Boulardii:
189. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296087/
190. https://www.ncbi.nlm.nih.gov/pubmed/25653151
191. https://www.ncbi.nlm.nih.gov/pubmed/15858959
192. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125647/
193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829915/
194. https://www.ncbi.nlm.nih.gov/pubmed/21997865
195. https://www.ncbi.nlm.nih.gov/pubmed/18256417
196. https://www.ncbi.nlm.nih.gov/pubmed/17306006
197. https://www.ncbi.nlm.nih.gov/pubmed/27283364
198. https://www.ncbi.nlm.nih.gov/pubmed/22476321
199. https://www.ncbi.nlm.nih.gov/pubmed/22335323
200. https://www.ncbi.nlm.nih.gov/pubmed/26216624
201. https://www.ncbi.nlm.nih.gov/pubmed/7872284
202. https://www.ncbi.nlm.nih.gov/pubmed/24311316
203. https://www.ncbi.nlm.nih.gov/pubmed/15740542
204. https://www.ncbi.nlm.nih.gov/pubmed/16572062
205. https://www.ncbi.nlm.nih.gov/pubmed/15357564
206. https://www.ncbi.nlm.nih.gov/pubmed/2494098
207. https://www.ncbi.nlm.nih.gov/pubmed/7872284
208. https://www.frontiersin.org/articles/10.3389/fnagi.2016.00256/full

Saffron:
209: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599112/
210: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643654/
211. https://www.ncbi.nlm.nih.gov/pubmed/27595298
212. https://www.ncbi.nlm.nih.gov/pubmed/15707766
213. https://obgyn.onlinelibrary.wiley.com/doi/full/10.1111/j.1471-0528.2007.01652.x
214. https://www.ncbi.nlm.nih.gov/pubmed/19720342
215. https://www.ncbi.nlm.nih.gov/pubmed/20831681
216. https://www.ncbi.nlm.nih.gov/pubmed/19838862
217. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941716/
218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850693/
219. https://www.ncbi.nlm.nih.gov/pubmed/20688744
220. https://www.ncbi.nlm.nih.gov/pubmed/30343354

Inubio™ Prebiotic Ingredients—Inulin, Chicory Root & Jerusalem Artichoke:
221. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686634/
222. https://www.ncbi.nlm.nih.gov/pubmed/28596023?dopt=Abstract
223. ttps://academic.oup.com/jn/search-results?f_TocHeadingTitle=Inulin%20and%20Oligofructose:%20Health%20Benefits%20and%20Claims-A%20Critical%20Review
224. https://academic.oup.com/jn/article/137/11/2524S/4664499
225. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705355/
226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896694/
227. https://www.ncbi.nlm.nih.gov/pubmed/24688953
228. https://www.ncbi.nlm.nih.gov/pubmed/18853230
229. https://www.ncbi.nlm.nih.gov/pubmed/27623982
230. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041804/